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Introduction – What is measles?

• Pathogen: Measles virus (MeV)
• Single-Stranded, negative sense RNA virus in genus Morbillivirus

• Airborne disease
• Spread through coughs and sneezes of infected person

• Direct contact with infected secretions

• Clinical signs include 
• Fever

• Skin rash

• Cough, coryza and conjunctivitis

3
(Fig 4A, Rota et al., 2016)



Introduction – What is measles?
• Incubation period

• 10 days to onset of fever, 14 days to onset of rash

• Contagious period
• 4 days before to 4 days after the onset of rash

• Recovery
• Resolves spontaneously after 1 to 3 weeks

• Lifelong immunity

4(Fig 6B, Rota et al., 2016)



Introduction – MeV infection

5(Fig 5, Rota et al., 2016)

Initial targets: Respiratory tract-resident dendritic cells (DCs) and alveolar macrophages



Introduction – MeV infection
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Amplification: In regional lymphoid tissues followed by systemic infection



Introduction – MeV infection
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Transmission: MeV is transmitted to epithelial cells by infected lymphocytes and DCs.
As a result, large amount of progeny viruses are released into respiratory tract.



Introduction – MeV infection

• Immune suppression caused by MeV infection
• Leads to secondary infections, which is causes majority of measles death

• Lasts for weeks to months after acute stage of infection

• Proposed mechanisms of MeV-induced immunosuppression
• Lymphopenia during acute phase

• Suppression of lymphocyte proliferation

• Long-term changes in cytokine secretion

• “Immune Amnesia”
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(Permar et al., 2006; de Vries et al., 2012)



Introduction – MeV infection

• Hypothesis “Immune Amnesia”
• During the lymphopenia during acute phase, pre-existing memory 

lymphocytes depletes.
Immunosuppression is the result of impaired previously acquired 
immunological memory.

• Proposed recently in 2012

• Provides explanation to 
• Prolonged immunosuppression after recovery from lymphopenia

• Greater reduction of all-cause child mortality than proportion of measles 
death prevented after mass measles vaccination campaigns (Aaby et al., 
1995)
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1st Study
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Methodology
• Macaques infection model

• Rhesus (n=5) and cynomolgus macaques (n=35)

• Infected with 
• Recombinant MeV strains  (rMVIC323 or rMVKS) expressing EGFP

(EGFP, enhanced green fluorescent protein)

• Blood collected daily from 0 to 13 days post infection (d.p.i)
• Total white blood cell counts

• Peripheral blood mononuclear cell (PBMC) isolation

• Necropsy
• Macaques were euthanized at different time points (2 to 15 d.p.i.)

• Lymphoid tissues were collected for immunohistochemistry and flow 
cytometry
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Methodology
• Cell sorting by flow cytometry

• T-lymphocytes
• naïve (CD45RA+, Tn), central memory(CD45RA-CCR7+, TCM), effector 

memory (CD45RA-CCR7-, TEM)

• B-lymphocytes
• naive (IgD+CD272, Bn) & memory (IgD-CD27+, CD20+HLA-DR+, BM) 

• Detection of MeV infection by EGFP
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% of MeV-infection of different cell types at different locations during the 
approximate peak viremia

(Panel E to G, n=14; Panel H, n=3)

Results

(Fig 1, de Vries et al., 2012)
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Relative population sizes of T-lymphocytes in PBMC at different d.p.i. (n=9)

Results

(Fig 5A, de Vries et al., 2012)



1st study: Conclusions
1. MeV preferentially infected CD45RA- memory T-lymphocytes more than naïve T cells

2. MeV infection caused transient leukopenia followed by massive lymphocyte expansion
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Proposed model for immune suppression of MeV infection

(Fig 5B, de Vries 
et al., 2012)



2nd study: Epidemiological data analysis based on 
"immune amnesia" hypothesis

16



Hypothesis

• If loss of immunological memory after measles exist, host with 
impaired resistance will be more susceptible to infectious diseases.

• Therefore, non-measles infectious disease mortality should correlate 
with measles incidence data.

• The association should be strengthened when measles incidence data 
are transformed to reflect the accumulated population with measles-
induced immunomodulation
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Methodology
• Data sets: National-level epidemiological data  

• From (i)England and Wales, (ii) the United States and (iii) Denmark

• For children aged 1 to 9 years in Europe or 1 to 14 years in US

• Period around the introduction of mass measles vaccination

• Data analysis
• Regression analysis of non-measles infectious disease mortality against 

measles incidence or prevalence of measles-induced immunomodulation
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Methodology
• Data analysis

• Transformation of measles incidence to measles-induced immunomodulation

• To reflect accumulated immunomodulated population size at a certain time

• Simplified example: If immune memory loss last for 3 years, 
Total number of immunomodulated individuals (S) = 
Sum of measles cases of last 3 years

• Prevalence of measles-induced immunomodulation = S / Total population

• Best-fit duration of immunomodulation

• Transformation were repeated with different duration of immunomodulation

• Best-fit duration = 
Duration that gave highest R2 in regression of transformed data against 
mortality
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Results

20(Fig 1, Mina et al., 2015)



Results – England and Wales
• Annual incidence of nonmeasles infectious disease mortality regressed against 

the prevalence of MV immunomodulation
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Best-fit duration = 28.3 months,  
R2 (=0.92)

(Fig 2, Mina et al., 2015)



Results – the United States
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Best-fit duration =  30.9 months,
R2 =0.88

(Fig 3, Mina et al., 2015)

• Annual incidence of nonmeasles infectious disease mortality regressed against 
the prevalence of MV immunomodulation



Results – Denmark
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Best fit durations = 26.4 months

(Fig 4, Mina et al., 2015)



Results

• Data analysis on pertussis as control
• Using England and Wales data set

• Duration of immunomodulation tested 
from 0 to 48 months

• No correlation between pertussis 
incidence and non-pertussis infectious 
disease mortality
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(Fig S13, Mina et al., 2015)

Duration of immunomodulation (months)



2nd Study: Conclusion

• Measles infection 
• Caused roughly 2 to 3 years of prolonged impact on 

subsequent mortality due to immunomodulation

• Implicated in nearly half of all childhood deaths from infectious disease
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3rd study

26



Hypothesis

• Changes in composition of circulating B lymphocytes after MeV 
infection should be reflected in the genetic composition of 
the immune receptor repertoire of MeV-infected individuals
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Methodology
1. Prospective study on the changes in genetic composition of 

human B lymphocytes after measles

2. Ferret model of measles-induced loss of acquired immunity 



Methodology
1. Prospective study on human
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Disease group

• Developed a course of 
laboratory-confirmed 
measles

• Blood collections:
1st: Before any symptoms of 
measles

2nd: Around 40 days after 
onset of rash

Uninfected control 
group

• Subjects remained 
seronegative to measles 
across the two time 
points

Vaccine control group

• Adults vaccinated with 
trivalent inactivated 
influenza vaccine (TIIV)

• Blood collected before 
and 40 days after 
vaccination

Children subjects 
• Aged 4 to 17 years
• Unvaccinated and without history of measles 
• From 3 Orthodox Protestant schools in the Netherlands



Methodology

• Human blood samples
• Measles-specific antibody titre was determined

• Peripheral blood mononuclear cells (PBMC) were isolated

• Fluorescence-activated cell sorting of PBMC
• PBMC were stained with cell surface marker-specific antibodies 

and sorted in to five populations:
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Isotype-resolved BCR sequencing
CD19+CD27−

B naïve cells

CD19+CD27+ 

B memory cells

CD19+CD27+

CD38+

plasmablasts

CD3+CD45RA+ 

T naïve cells
CD3+CD45RO+

T memory cells



Methodology

• Isotype-resolved BCR sequencing
• RNA extraction of B cell population

• Library preparation
• Reverse transcription with five IGHC region reverse primers

• Amplification of cDNA with V-gene multiplex primer mix and “3′ universal” 
reverse primer using KAPA protocol

• Sequencing 
• Performed using standard Illumina 300 bp paired-ended MiSeq protocols
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Methodology

• Analysis on genetic properties of isotype-specific BCR repertoires
• IGHV-J gene frequencies

• % of sequences a certain IGHV-J combination to the total BCR repertoire

• Complementarity determining region 3 (CDR3)
• Amino acid length

• Mutation rate from germline 

• B cell “clone”
• Defined as BCR sequences with identical 

IGHV and IGHJ annotation and CDR3 length

31(Fig 1A, Ye et al., 2018)



Methodology
2. Ferret model of measles-induced loss of acquired immunity 

• Three groups of 4 male ferrets
Group 1: LAIV vaccination

Group 2: LAIV vaccination + CDV infection

Group 3: Control (No LAIV vaccination and CDV infection)

• LAIV: Tetravalent seasonal live attenuated influenza vaccine

• CDV infection : Canine distemper virus (CDV) infection four weeks after LAIV

• Used as a surrogate model for measles infection

• Influenza A/INDRE/Mexico/4487/2009 challenge 
• For all groups ten weeks after CDV infection

• Animals were infected intranasally with virulent 2009 pandemic H1N1 
influenza virus strains
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Results

Prospective study on human
• Disease group, n= 26

• Uninfected control, n = 3

• Vaccine control group, n =7
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(Fig 1B, Petrova et al., 2019)



• Decreased CDR3 length and increased IGHV mutation 
in the B memory compartment following measles

34(Fig 3A, Petrova et al., 2019)



• Isotype profile in the B memory compartment following measles

35(Fig 3B, Petrova et al., 2019)

Decreased IGHD frequency and
increased IGHG1 and IGHG2 frequencies in measles group



• Lower number of overlapping clone in measles group
• Reduced frequency of overlapping B cell clones after measles

36(Fig 5A, Petrova et al., 2019)

Overlapping clone: Clone detected in both time points with same identity
Clone frequency: No. of overlapping clone/ Total no. of clone per individual
Dot size: No. of overlapping clone of the individuals

Median no. of 
overlapping 
clone: 53

Median no. of 
overlapping 
clone: 21



2. Ferret model of measles-induced loss of acquired immunity 
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Titers of influenza H1N1 virus in 
nasal swabs

(Fig 6, Petrova et al., 2019)

Influenza-neutralizing antibody titers



3rd Study: Conclusions

1. Changes in genetic composition suggested previously generated B 
memory populations depleted after measles infection in human

2. Vaccine-acquired immunity was lost after CDV infection in ferret
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Take home messages

• “Immune Amnesia” hypothesis 
• Long-term immunosuppression after measles infection is caused by

the loss of acquired immunological memory due to depletion of 
pre-existing memory lymphocytes during acute infection

• Supported by evidences from
• Animal experiments

• Epidemiological data analysis

• Genetic analysis of lymphocytes

• Importance of measles vaccination
• Not only to protect against measles

• To maintain both individual and herd immunity to other pathogens
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Q & A
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