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1. Imaging technique for differentiation of bacterial strain in vivo

Biology
Localization of pathogens
ﬂ Pathogenesis
\ Great advances have been made on E. coli, however, such tools are

not well established for many commensals of interest.

Imaging

Bacteroides, the most abundant genus within the gut of US residents.

p Whitaker et al., Cell, 2017



1.1. Imaging technique for Single-Cell Strain Distinction in the Gut Microbiome
E

Mucus Bf: B. fragilis, red
Bo: B. ovatus, orange
_ Bu: B. uniformis, cyan
Act_ln- 5t: B. thetalotaomicron, green
de!mea_ted Bv: B. vulgatus, yellow
epithelial Be: B. eggerthii, blue
boundary

Host nuclei _
. Whitaker et al., Cell, 2017



Applications of the 15t Platform

The major breakthrough
/ J g

1. Imaging of fluorescently tagged Bacteroides strains at the single-cell level in vivo .

7 Study pathogenesis and microbiota-based therapies (probiotics)

2. This platform opens the door for studying single-cell interactions and understanding
spatial organization of the gut microbiota.
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2. Modulating gene expression of gut commensals in vivo

Wild type strain

Protein function Gene knockout/knockdown strain

Complementary strain

A 4

Tools for artificial gene expression are available on E. coli; however,

Modulate its expression : )
D such tools are not well established for many commensals of interest.

by an exogenous inducer

Bacteroides, the most abundant genus within the gut of US residents.

Lim et al., Cell, 2017



2. Modulating gene expression of gut commensals in vivo
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‘ Bacteroides

Engineered Bacteroides @
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Microbiome
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Utilization
» Other Applications

New platform enables modulating gene
expression of Bacteroides inside the gut
through introduction of a synthetic inducer Iin
drinking water.

Constitutively expressed repressor and inducible
promoter: Four to five orders of magnitude

Lim et al., Cell, 2017



Applications of the 2"d Platform

1. Gene expression can be modulated with time in the same strain or experiment,
permitting Kinetic studies of the bacterial or host response to production,
depletion, or repeated exposures of a gene product.

2. Inducible systems allow mechanistic study of essential or toxic gene products.



3. Single cell fluorescence imaging of glycan uptake by intestinal bacteria

e

Wild type strain

Protein function - Gene knockout/knockdown strain

_ Complementary strain

Metabolic pathway

Label substrates with fluorescent tags

Hehemann et al., ISME J, 2019
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B.theta - WT

3.1. Single cell fluorescence imaging of glycan uptake by B. theta WT and mutant strains
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Yeast a-mannan (Y M)
was labeled with 6-
aminofluorescein
(FLA) to produce
FLA-YM

MAN-PUL-1/2/3
utilization of YM
by B. theta

DAPI (blue, cellular DNA), FLA-YM (green), and Nile Red (red, membrane lipid bilayer), 0* (true zero), O
(directly after glycan addition), Visualized by super-resolution structured illumination microscopy (SR-SIM)

Hehemann et al., ISME J, 2019



Applications of the 39 platform

1. This platform provides a direct method to assess specific glycan metabolism in
Intestinal bacteria at the single cell level.

2. This platform enables rapidly assign metabolic phenotypes to genotypes on the
single cell level within a microbial community.

3. This platform is powerful especially when combined with genome editing
platforms.

Hehemann et al., ISME J, 2019



4. Molecular imaging of bacterial infections: Overcoming the barriers to clinical translation

Traditional methods Molecular imaging

Noninvasive biopsy

Holistic view of whole organ/body
Provides key spatial information
Longitudinal assessments

Cost for PET/CT scan = $2000
Rapid results

PET/CT with bacteria-specific imaging agent  m— 2-18F-f|uorodeoxysorbito|
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. . ilc inflammation
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Rapid detection of therapeutic response

Riskof —ceee---;
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R
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Delayed results

Invasive biopsy
Prone to sampling error
Risks associated with surgery

Generally limited to a
single time point
Cost range $300-$5000

Post-

< Pre-
\ treatment

treatment

Precision medicine

Potential to enable individualized treatments Barriers to clinical translation:
for infected patients 1 Target SeleCtiOn

Early detection of patients at risk of

T [ TAHEETRME ... s 2. Sufficient tissue contrast
er applications . - .

Antibiotic concentrations \ 3. Radiation risks

determined in peripheral Measurement of intralesional drug

blood samples concentrations

Understanding local biology at
infection sites

Ordonez et al., Sci. Transl. Med.,2019
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Summary

These platforms provide good insights for the following studies:

1. Single-cell interactions and connect spatial organization to function
2. Protein function in its native environment

3. Metabolic pathways

4. Host-microbiome interactions

5. Early diagnosis and monitoring of bacterial infections

6. Other pathogens especially anaerobes such as Clostridium, Fusobacterium.
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1.1.1. Constructing plasmids for Expression of fluorescent proteins
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Golden

Gate
reaction
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transform conjugate plate

promoter
RBS

Host tissue (red, actin ), GFP expressing Bacteroides

Vector: NBU2 integration plasmid _ :
(green) and non-expressing Bacteroides (blue, DAPI)

18 Whitaker et al., Cell, 2017



1.1.2. Developing High-Expression Tools
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1.1.3. High protein expression will not result in a loss of Bt fitness
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1.2. Colonization by Bt Prevents Crypt Localization of an Isogenic Strain

Isogenic strains of B. thetaiotaomicron
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2.1.1. Engineered tetO2-Containing Promoters Maintain High Levels of Gene Expression
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2.1.2. Evaluation and Performance of the P1TDP Platform in Different Bacteroides Species
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2.1.3. Exogenous Control of Bacteroides Gene Expression in the Mouse Gut via a Synthetic Inducer
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2.1.4 Inducible Expression Platforms Reveal New Dynamics of Host-Microbiome Interactions
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3.1.1. Choose substrates for metabolic pathway study

Yeast a-mannan (Y M) and rhamnogalacturonan-11 (RGII), two structurally distinct glycans were
fluorescently labeled and fed to Bacteroides thetaiotaomicron VVPI-5482.
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B. theta - WT

3.2. Full panel display of fluorescently labeled B. theta mutant strains
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(directly after glycan addition), Visualized by super-resolution structured illumination microscopy (SR-SIM)
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4. Molecular imaging of bacterial infections: Overcoming the barriers to clinical translation

Background:

Clinical diagnostic tools requiring direct sample testing cannot be applied to infections deep within
the body, and clinically available imaging tools lack specificity. New approaches are needed for
early diagnosis and monitoring of bacterial infections and rapid detection of drug-resistant
organisms.

Highlight:

Molecular imaging allows for longitudinal, noninvasive assessments and can provide key
information about infectious processes deep within the body:.

Ordonez et al., Sci. Transl. Med.,2019



