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Synthetic Plastic:

industry and everyday
lives

* Widely produced and used since 1950
* (Global output 400 Mt per year by 2020
* Polymeric material

v’ Plasticity

v Low density

v Transparency

v Toughness




“White Pollution”
caused by plastic




Treatments of plastic wastes

Cumulative plastic waste generation and disposal
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(Geyer, R. et al., Science Advances, 2017)

Million metric tons

80% discarded by landfills &
nature environment

Raising portion of plastic
Incineration

Very small portion of plastic
waste 1s recycled

Accumulation of plastic in the
environment!




Plastic biodegrading

C’}_) Biodegradable plastic E Plastic-degrading microbes

* Bio-based plastics * Natural bacteria

* Petroleum-based plastics * Synthetic bacteria



Natural bacteria

----From plastic-eating worms

» Waxworms (Achroia grisella) 1s a symbiotic species of
honeybees

* The larvae of waxworm feed on honeycomb and other materials
found 1n honeybee colonies

*  Waxworms larvae can also feed on polyethylene (PE) to
Survive

* PE 1s most commonly produced plastic



Larvae survival test
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completion life cycle of waxworms as a
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Larvae respiration test
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Gut microbes from plastic-eating worms
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Synthetic bacteria

----(Gene-edited bacteria with improved functions

* Non-natural chemical production or new functions

* New pathway design & enzyme engineering through
directed evolution

Synthetic bacteria

==,' . e Firstly 1solated from nature environment

a® _ . s
Q Cag e * Grow well 1n harsh environments
I. -
" s

e Efficient plastic biodegradation after genetic modifications

(Yeom, Le & Yun, 7rends Brotechnol. 2022)



Steps of biodegradation

1. Biodeterioration 2. Depolymerization 3. Bioassimiliation 4. Mineralization
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* Biofilms: Multicellular communities formed on a surface by

Step 1 bacteria

B . d . .  Common types of plastic (e.g. polyethylene (PE) and
10 Cter 10T athn polypropylene (PP)) have a high surface hydrophobicity

* Biofilms are necessary to increase the polymeric surface
Interaction with bacteria

Spo

p-amino acid—e

Polyamine —e

Sporulating cell

Extracellular
matrix

Motile cells Differentiation Bundling of Biofilm maturation Biofilm dispersal
into matrix chains, growth and sporulation
producers and and aggregation

cell chaining




Step 2 Depolymerization

- Secretion of extracellular enzymes to
x break down long polymer chains

Preparation for the uptake of
- fragments by microbial cells

(Yeom, Le & Yun, Zrends Biotechnol. 2022)
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Step 4 Mineralization

Release of the very end product after Usually harmless gases (CO2, CH4,
the metabolic cycle to the H?20, and N2) and biomass
environment

(Yeom, Le & Yun, 7rends Biotechnol. 2022)



Feasibility of synthesized bacteria application
----Application of new enzymes to change carbon source

Synthetic Methylotroph - E. coli SM1

 E. coli usually cannot use methanol as a
Sequence,

sole carbon source Imfge :

* Methanol dehydrogenase and C - C bonding

enzymes redesign the metabolic pathway

* The E.coli cells significantly assimilate
methanol
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(Chen, et al., Ce/l 2020)
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Conclusion a

* Synthetic bacteria for plastic degradation requires Alkane
hydroxylase, multiple catalytic enzymes, and different
transporters 1n genetic modification.

* Plastic-degrading synthetic bacteria 1s feasible with theoretic
support of changing carbon source
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