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Microbiology meets network theory

Microbiomes are complex microbial communities.
Interactions influence the structure and the function

of such communities.
More than 99% of microorganisms in nature could

not be cultured alone in vitro!

ATA

Genetic Potentiaj L]‘ranscriptomics

High-throughput Omics technologies:
» high volume of data generation

* high quality of data interpretation —
- fairly acceptable cost /A
N Proteomlcs

Effective computational analysis techniques are
necessary!

Lﬂ 2

Dey, D., et al. Integrating Omics Technologies to Understand Microbial Systems. 2021
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Microbiology meets network theory

What can we do with a Network?

Obtain info that we wouldn’t get by analysing individual components!

 Important protein calls HUBS (have a lot of connections-degree)

- Community of proteins (belongs to the same pathway or Complex)
« Simulate in silico the bacteria behaviour
« Formulate new hypothesis about function

Communities

Image by Thamindu Dilshan Jayawickrama
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Basic network theory concepts
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Image by Jean-Claude Walser
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Basic network theory concepts

Random network
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Scale-free network

Bayesian network

Scale-free network: most of nodes have only a few connections to other nodes,
whereas some hubs are connected to many other nodes in the network.Real-world
networks are often claimed to be scale free.

Bayesian network: a probabilistic graphical model that represents a set of variables
and their conditional dependencies via a directed acyclic graph (DAG).
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https://en.wikipedia.org/wiki/Probabilistic_graphical_model
https://en.wikipedia.org/wiki/Conditional_dependence

Networks from metagenomics

Network modelling methods:

Gene Functional Functional
Assembly Prediction Annotation Profiling Genome-scale
Metabolic
Network
( Metagenomics
_ Reference Taxonomic Similarity/
whole metagenome Binning Catalogs Profiling Correlation Co-occurrence
shotgun sequencing Nsoamby
WMGS
( ) OTU Marker  Taxonomic . . .
Goise Binning operational taxonomic units (OTUs)
16S rRNA

Tools: UPARSE, MetaPhlan4, mOTUs2, QIIME2, HUMANNS

Taxonomic table Functional table

Sample ID Sample ID
S1| S2| S3| sS4 | S1| 82| S3| sS4 |
OTU_1 » KO_01
OTU_2 KO_02
OTU_3 KO_03
OTU_4 KO_04
OTU_5 KO_05
OT.U_n Kb_n
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Mehdi Layeghifard, et al. Trends Microbiol. 2017 Mar;25(3):217-228.




Networks from metagenomics
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Detecting Hub node from Networks % 3% COFfa

" @l
important nodes or hubs: OO @
most influential member in the microbial community O OO O
most essential microbe for community stability JIRER S O O@O °
organism responsible for disease transmission G O @ o0

oy OQO

Detecting Biologically Important Clusters from Networks

Clusters/modules: provides information about the local
interaction patterns in the network and their contribution to the
overall structure, connectivity, and function of the network

Mehdi Layeghifard, et al. Trends Microbiol. 2017 Mar;25(3):217-228.
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Networks from metagenomics

Networks at the taxonomic level

©® pProteobacteria  Firmicutes @ verrucomicrobia 0 Archaca
C K Acidobacteria @ Bacteroidetes  Gemmatimonadetes @ Others
O-occurrence networks ® Chioroflexi Actinobacteria @ Planctomycetes

151 soil samples
l metagenome data analyses

2798 OTUs
l correlation analysis

Co-occurrence networks
(296 nodes (OTUs) and 679 edges)

l subsequent topological analysis

Modules

l

OTUs colored by taxonomy

co-occurrence networks in soil
microbial communities

Albert Barberan, et al.ISME J. 2012 Feb; 6(2): 343-351.
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https://pubmed.ncbi.nlm.nih.gov/?term=Barber%C3%A1n%20A%5BAuthor%5D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260507/#

Networks from metagenomics

NetWOI’kS at the fu nCtIOI’]a| |EVE| . Aminoglycoside . Beta-lactam . Chloramphenicol . MLS — Multidrug
.Others @ Sulfonamide . Tetracycline (:x Genus

50 samples from 10 typical environments
dimethyladenosine tolC

transferase mdtO
— mdtL

loirﬁmphienicol

MLS-B resistance

260 ARG subtypes belonging to 18 ARG types protein > ' “S’e'ase.yc acr8
taxonomic abundance W&Z@é ' SN mdiH
tetPB  adenyltrsferase g . mng
¢ @ RNA mgG
Significant Spearman’s rank correlation  enhrobacteng, . @ CHA3 acrA
Bacteroides

between the microbial diversity and the

. . ! N Streptococcus
ARGs diversity Rhodobacter ) oceanicola @ linc Wetig,aN ot i
¢ :‘ j | ansiNgg Fa¢ al{@ieriury' \l
“ / tetG ‘ ';«"" 11 /," |
.\ / 1A gmi LOYY &/ {\} "/ ) Bifidobacterium
Co-occurrence network Ruegeria® /| <mgd " Qonicr A — | Y /)

\

. maqoi?\s?”a_/o Ruminococcus

\Methylobacteriunt~. | /

¢ \\
Chelativorans SY/1® il

Nodes were coloured according to / hidramphenicol and florfenicol |
ARG types and genus inogl ] a3 2 \‘} w.Copranoces
yp g a%@t'ﬁ?r%%?&ife ——CmxA OAIisripes
® totA
chloramphenicol resistance tetracycline efflux protein
protein

The Network analysis revealing the co-occurrence patterns between antibiotic
resistance genes (ARGs) subtypes and microbial taxa in multiple environments.

Bing Li, et al. The ISME Journal, pages 2490-2502 (2015)
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https://www.nature.com/articles/ismej201559#auth-Bing-Li-Aff1
https://www.nature.com/ismej

Networks from metatranscriptomics

. . Pathway Abundance
Network modelling methods:
p G- =)
Gene Family Functional

Abundance Profiling Metabolic

/—. Network )
Transcript

Abundance S |

Regulatory

Assembling & Differential bl
: : —

Mapping Alignment Expression Marker Genes

CMetatranscriptomic:;)

Tools: MetaTrans, SAMSA

More pertinent information on functional activity: metatranscriptomics can reveal
details of genes that are transcriptionally active under specific conditions and time

Zhaogian Liu, et al. Briefings in Bioinformatics, March 2021, Pages 1639-1655
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Networks from

Phenylalanine, tyrosine and Starch and Sucrose
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metatranscriptomics

12 cecal and colon derived samples from mice

|

236,769 unique transcripts

v
relative expression of each gene family

v
Metabolic networks

v
Colour of node indicates functional

category of enzyme as defined by
KEGG superclasses

Metatranscriptome data mapped in the context of a global metabolic network
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Galeb S, et al.Nature Microbiology volume 3, pages 356—366 (2018)


https://www.nature.com/nmicrobiol

Networks from metaproteomics

Network modelling methods:

Protein Functional Expressed

Identification  Profiling Protein abundance Protein
( Metaproteomics PPI Network

Tools: IdentiPy, Trans-Proteomic Pipeline, compleXView

A

Protein—protein interaction (PPIl) networks describe physical and selective contacts
that happen between pairs of proteins, in certain molecular regions and in a defined
biological context.
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Networks from metaproteomics
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18 infants: 11 healthy controls and 7
patients with atopic dermatitis

18 fecal samples

|

49,973 annotated proteins out of 68,232
total proteins

PPl network

Reporter protein network involving ubiquinone and other quinone biosynthesis as well as

energy supply.
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Networks from metabolomics

Network modelling methods:

Metabolite Abundance

\ K
N Identification Metaboliomics-
( Metabolomics P \ / driven Network

Differential Metabolites

Tools: Pathos, MetaboAnalyst, Netome

Metabolomics-driven networks: consisting of nodes as metabolites and edges as

metabolic reactions, provide a comprehensive description of a community’s
metabolic processes.

Zhaogian Liu, et al. Briefings in Bioinformatics, March 2021, Pages 1639-1655
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Networks from metabolomics

Tz"“" . 65 T2D patients:

, | 49 with and 16 without
dieachoic e utres /C diabetic complications,
Acnepacii — |\ and 35 healthy controls
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The correlation network between gut microbiota and metabolic traits in T2D and healthy
groups
Lijuan Zhao, et al. Endocrine. 2019 Dec;66(3):526-537.
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https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Zhao+L&cauthor_id=31591683

Networks from multi-omics

Human Gut Microbiome

Each omics analysis has its limitation

. G2 A 4791'9,’

1. Integrated metagenomic, 0 50 gy ~5c,
metatranscriptomic and metaproteomic RO S Py Lo,
data to construct a community-wide o p
metabolic network <o / b

2. Apply Bayesian networks, to elucidate the ~7/ Bayesian T
underlying molecular mechanisms of | P ion
diseases by associating the microbial Associatioyns
community, both at the level of taxonomy N
and functionality, with disease phenotypes =)
and clinical measurements [

Clinical Measurements

Human Diseases

Zhaogian Liu, et al. Briefings in Bioinformatics, March 2021, Pages 1639-1655
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Networks from multi-omics

132 individuals over a year
profiled every 2 weeks, on average, for
s different omic types

hgr__KRT8_ti+1 hgl__SERPINA1_ti+1

Week
sample
hgr__RPL3_ti+1 hgi__SEPP1_ti+1 Obtaingd_ti1
i s__Bactermdes_vulga(us_(iQ
hgr__TMSBA4X_ti+1 hgi__CD74_ti+1 - -
s_Eubact*ium_rectale_tiﬂ s_Bactero’ldes_uniformis_tiﬂ
hgr__TPT1_ti+1 hgi__ATP1A1_ti+1 VAR Ty - 2
s__Faecalibactérium_prausnitzii_ti+1 s:Bacggrowes_stercoris_xjﬂ
hgi__ALDOB_ti+1 T A&
- : B e
s_Prevofolla_cogri_ti+1 s_Bagtorides_ovatus_ti1 & o Peptidylprolyl” 3
isomerase._ti+1
¥ g__'r\ P pyruvate N
s_ ig s ified_tisg ides_massiliensis_ti+1  carboxyki idase_ti+]
' Y (ATP).ti+1 § %
s__Bacterddes_caccae_tj+1 0
e orfldes_ - g__Phosphoglycerate - g__H(+)-transporting.
mutase : " “two-sector N
| (2:3-di ")' ndent)_ti+1 ATPase_ti+1 ae—aas )
m__Deoxycholic acid_ti | g_Phosphopyrm‘/a(e _G'Jui;mate A“ "_-m__Deoxycholic acid_ti+1
hydratase G4 oo -defffydrogenase_ti+1 PR\ \|
m__Spermidine_ti m__Uric acid_ti T H
g__Superoxide ‘ 9__DNA<dlrected ", m_Srrmidine_(i+1 m_Urie nci«iﬂ
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m__7-Methylxanthine_ti 'm__Pyridoxine_ti __ polymerase_ti+1
9_Bacterial m__7-Methylxanthine_ti+1 m__Pyridoxine_ti+1
non-heme «
ferritin_ti+1
m__Cadaverine_ti m__Deoxyadenosine_ti
m__Cadavering#i+1 m_ﬂvxyadenosina_tin

m__Phytosphingosine_ti m__beta-Alanine_ti
.

m_ﬁiéiin_ti

m__Phytosphingosine_ti+flj m__beta-Alanine_ti+1

m__Biotin_ti+1

Dynamic Bayesian network (DBN): a Bayesian network (BN) which relates variables to
each other over adjacent time steps.

Daniel Ruiz-Perez, et al. mSystems. 2021 Mar 30;6(2):e01105-20.
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https://journals.asm.org/doi/10.1128/msystems.01105-20#con1

Challenges

What to do with rare taxa?

The majority of taxa in sequencing data are only found in very few samples. This means that a
large part of sequencing data consists of zeros.

« How to deal with environmental factors?

It is difficult to determine whether an edge in a microbial network is due to a common response to
an environmental factor (or a third taxon) or represents a direct interaction between two taxa.

 How to evaluate microbial network construction in silico?

Evaluations are carried out to assess which tools infer the most accurate networks and to explore
how sample number and other data properties affect tool performance.

« How well do microbial networks represent ecosystems?

Assuming that network inference is sufficiently accurate, can network properties such as
modularity, and network density give useful information about the ecosystem under study?

Karoline Faust. The ISME Journal volume 15, pages 3111-3118 (2021)
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https://www.nature.com/articles/s41396-021-01027-4#auth-Karoline-Faust-Aff1
https://www.nature.com/ismej

Summary

« The microbiome is a complex system of microbes

+ With the development of network theories and meta-omics data, network models are
widely used to study microbial communities.

« Multi-omics data integration in networks provides a comprehensive view of microbial
communities and their interactions with other factors.

+ Challenges remain, including detecting rare microbes, incomplete genome
annotation, and selecting appropriate network models.
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