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Imbalanced Global Carbon Cycle

Carbon Dioxide Concentration (Parts Per Million)
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Autotrophs

Chemosynthetic bacteria use
the energy stored in sulfur
compounds to convert CO,
into organic compounds

Bacteria enlarged

rlendricks

[\co Photosynthetic organisms such as plants
- and algae use the energy of the sun to
¥ 0, convert CO, into organic compounds

Phytoplankton enlarged
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Photosynthesis
Chemosynthesis

E.g., terrestrial and aquatic organisms,

including cyanobacteria E.g., sulphur bacteria, nitrifying

bacteria, and methanogens

Image credit: Earth Science Education (ERESE) (CC BY 4.0)
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Cyanobacteria (aka. Blue-Green Algae)

 Gram-negative bacteria
e Share traits from both algae and bacteria

* Responsible for 20~30% of global carbon
fixation [

e Convert up to 10% of sunlight energy into

biomass [
* 10x higher than terrestrial plant

* 2x higher than algae

[1] Noreiia-Caro & Benton, J. CO2 Util. 2018, 28, 335

[2] Berkshire Community College Bioscience Image Library (CC0 1.0)
[3] Kalaitzidou et al., HAICTA (conference). 2015, 832
[4] Dadheech et al. Hydrobiologia. 2012, 691, 269
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https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7df90787a9d7766f2ee11302ee5a6cd971c5e7ab
https://doi.org/10.1007/s10750-012-1080-6

Cyanobacteria (aka. Blue-Green Algae)

Share traits from both algae and bacteria

Algae Cyanobacteria Bacteria
e Eukaryote * Prokaryote * Prokaryote
e Photosynthetic * Photosynthetic * Non-photosynthetic
e Unicellular & multicellular e Unicellular & multicellular e Unicellular
* Can be filamentous * Can be filamentous * Found in many diverse
. . : . habitats
* Found only in aquatic * Found in many diverse
. habitats e (Capable of producin
* Does not produce toxins p P 8
. toxins
- : e Capable of producing
e Can form visible colonies . :
. toxins e Can cause increase of
In water - ..
turbidity, not visible

e (Can form visible colonies

) colonies
INn water




Six CO,-Fixation Pathways Used in Nature
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Six CO,-Fixation Pathways Used in Nature

The dominant pathway: Calvin-Benson-Bassham (CBB) cycle

Substrate
m i B
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Trends in Microbiology

CO,-concentrating mechanisms (CCMs)

Image credit: Liu, Trends Microbiol. 2022, 30, 567
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CO,-Concentrating Mechanisms (CCMs) in Bacteria
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Carboxysomes: A Group of
Bacterial Microcompartments
(BMCs)



Assembly Pathways of Carboxysomes

(A) a-carboxysome

l% Shell formation ’

CsoS2 forms multivalent interactions with AV i |

RuBisCO on its N terminus and binds shell
proteins on its C terminus | concomitant

o
& Core nucleation
assembly Xﬁ% Shell recruitment

Cso0S2

' Iinke¥\ " Rubisco Rubisco (quuid-like)
—_— ‘, —.aggregation condensate

Rubisco ',

CcmM

v

Core-first

assembly ",
SR R
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Core nucleation Shell recruitment

CcmN interacts with CcmM by its N terminus
and shell proteins through its C-terminal
peptide, inducing encapsulation of shell proteins
surrounding the RuBisCO matrix

(B) B-carboxysome (“inside-out” model)
Trends in Microbiology
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Image credit: Liu, Trends Microbiol. 2022, 30, 567
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Selective Permeability of Carboxysomes Shell

Proteins

Positive electrostatic
surface potentials for
HCO;-

To mediate permeability

Image credit: Liu, Trends Microbiol. 2022, 30, 567
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Positioning of Carboxysomes: McdAB Systems

Halothiobacillus neapolitanus RuBisCO-mTurquoise?2 ]

Phase Contrast Carboxysomes Merged

Cell pole region: Carboxysome biogenesis and degradation take place
14

Image credit: MacCready et al., Mol. Microbiol. 2021, 116, 277 (CC BY 4.0)
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Carboxysomes: Pass from Mother to Daughter Cell

Ambient CO,
(0.04%)

After 26.5 hburs, the cells
had only one carboxysome

1

O N WA UL O N

0 10 20 30 40 50 60
Time (hours)

Carboxysomes per cell

Time

* Decrease in carboxysomes per cell from generation to generation

* The growth rate gradually decreased from generation to
generation

Growth rate (hour™)

e Cells without carboxysome stopped growing immediately

4+ 3 2 1 0
Carboxysomes per cell
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Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)
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Carboxysomes: Different Activities

An example of an ultra-productive carboxysome
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Carboxysomes: Importance in CO, Concentration
and Cell Growth
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Image credit: (Left) Hill et al., Sci. Adv. 2020, 6, eabal1269 (CC BY 4.0 NC) 17

(right) Niederhuber et al., MBoC. 2017, 28, 2734. (CC BY 3.0 NC-SA)
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Potential Applications
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Example 1: Engineering Cyanobacteria for
Carbohydrates Biosynthesis

In comparison to heterotrophic hosts
(i.e., E. coli, and yeast), native
cyanobacteria are usually less tolerant

to chemicals

Synthesising soluble sugars are less or
not toxic

One example is glycogen which
accumulated in cyanobacterial strains
for carbon storage naturally, and is an
important and promising feedstock
material for producing biofuel

Strain used: Synechococcus sp. strain
PCC 7002

Credit: Aikawa et al., Biotechnol. Biofuels Bioprod. 2014, 7, 1 (CC BY 2.0)
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Example 2: Increasing Limonene Yield In
Cyanobacteria for Bioeconomy

* Pathway enzyme engineering
marginally increases
cyanobacterial terpene

(/'t3:rpizn/) production

* Sigma factor overexpression
improves photosynthetic

efficiency in cyanobacteria

* Enhanced photosynthesis results
in high limonene production in

cyanobacteria
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Conclusion

Roles of Autotrophs in Carbon
Cycle

e Autotrophs play an
important role in carbon

cycle

e Cyanobacteria are
responsible for 20~30%
global carbon fixation

e Achievable because of their

. Y,

Carboxysomes: A Group of
Bacterial Microcompartments

* Carboxysomes trap HCO;~
for RuBisCO with the

selective pore

* The role of McdAB system in

positioning carboxysomes

* It passes from mother to
daughter cell with varying

activity dynamics

\_ /

Applications of Cyanobacteria
in Biotechnology

e Cyanobacteria are abundant
sources of bio-active
compounds

* Recent studies focus on
identifying the strains and
growth conditions suitable

for large-scale cultivation

* It has huge potential for bio-

\economy j

22




Thank youl!

Do you have any questions?
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Carboxysomes: Pass from Mother to Daughter Cell

Carboxysome marker
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O e Wuce O Remove IPTG to stop
O O > +IPTG - O O — the biogenesis of

carboxysome
Survives in High CO, requiring Survives in
ambient CO, (HCR) ambient CO,
Constitutively expressed The native ccm operon An IPTG-inducible version of the ccm
RbcL-GFP allows for (ccmK2K1LMN) was operon was reintroduced to create
RuBisCO visualisation knocked out, producing the Accm® strain, resulting in IPTG-
the HCR strain Accm dependent carboxysome expression

and growth rescue in ambient CO,
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Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)
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Carboxysomes: Different Activities

Diagram of a Accm* family tree

. Carboxysome i Generation 1 | Generation 2 | Generation 3 | Generation 4 :
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* The single-carboxysome tree starts at the cell indicated with an asterisk
* Net productivity is calculated for each frame of the single-carboxysome tree

* Green, blue, and magenta colours indicate 2+, 1, or O carboxysomes, respectively, present at that time in the tree
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Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)
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Loss of Carboxysome Activity: Shell Breakage

Degradation cluster
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* Rapid diffusion of CO, into the cytoplasm
20 30 20 50 60 , o
T (htg) * Carboxysome lumen is no longer distinct from the cytoplasm

* In other words, the CCMs are abolished
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Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)
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