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Part I: 
Roles of Autotrophs in 
Carbon Cycle
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Imbalanced Global Carbon Cycle

Image credit: NASA Earth Observatory (2011)Image credit: University Corporation for Atmospheric Research (2024) 4

https://earthobservatory.nasa.gov/features/CarbonCycle
https://scied.ucar.edu/learning-zone/earth-system/biogeochemical-cycles


Autotrophs

Image credit: Earth Science Education (ERESE) (CC BY 4.0)

Photosynthesis

E.g., terrestrial and aquatic organisms, 
including cyanobacteria

Chemosynthesis

E.g., sulphur bacteria, nitrifying 
bacteria, and methanogens
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https://earthref.org/ERDA/582/


Cyanobacteria (aka. Blue-Green Algae)

[1] Noreña-Caro & Benton, J. CO2 Util. 2018, 28, 335

[2] Berkshire Community College Bioscience Image Library (CC0 1.0)

[3] Kalaitzidou et al., HAICTA (conference). 2015, 832

[4] Dadheech et al. Hydrobiologia. 2012, 691, 269 6

• Gram-negative bacteria

• Share traits from both algae and bacteria

• Responsible for 20~30% of global carbon 

fixation [1]

• Convert up to 10% of sunlight energy into 

biomass [1]

• 10× higher than terrestrial plant

• 2× higher than algae

Gram-staining of 
Synechocystis spp. [3]

SEM (left) and TEM (right) of Haloleptolyngbya alcalis [4]

Oscillatoria and Gleocapsa 
orient towards light [2]

(apical)

(microfibrillar 
structure)

(carboxysome)

(thylakoids)

https://doi.org/10.1016/j.jcou.2018.10.008
https://www.flickr.com/photos/146824358@N03/33595507874
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7df90787a9d7766f2ee11302ee5a6cd971c5e7ab
https://doi.org/10.1007/s10750-012-1080-6


Cyanobacteria (aka. Blue-Green Algae)
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Algae

• Eukaryote

• Photosynthetic

• Unicellular & multicellular

• Can be filamentous

• Found only in aquatic

• Does not produce toxins

• Can form visible colonies 
in water

• Prokaryote

• Non-photosynthetic

• Unicellular

• Found in many diverse 
habitats

• Capable of producing 
toxins

• Can cause increase of 
turbidity, not visible 
colonies

• Prokaryote

• Photosynthetic

• Unicellular & multicellular

• Can be filamentous

• Found in many diverse 
habitats

• Capable of producing 
toxins

• Can form visible colonies 
in water

Cyanobacteria Bacteria

Share traits from both algae and bacteria



Six CO2-Fixation Pathways Used in Nature

Image credit: Correa et al., J. Adv. Res. 2023, 47, 75 (CC BY 4.0)
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https://doi.org/10.1016/j.jare.2022.07.011


Six CO2-Fixation Pathways Used in Nature

Image credit: Liu, Trends Microbiol. 2022, 30, 567

The dominant pathway: Calvin-Benson-Bassham (CBB) cycle

RuBisCO
/ruːˈbɪskəʊ/

Carboxylase Oxygenase

(wasteful process)

CO2-concentrating mechanisms (CCMs)
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Substrate

2-Phosphoglycolate
(Toxic metabolite!)

3-Phosphoglyceric acid
(Synthesis of 

biomolecules!)

https://doi.org/10.1016/j.tim.2021.10.004


CO2-Concentrating Mechanisms (CCMs) in Bacteria

Image credit: Liu, Trends Microbiol. 2022, 30, 567

(CO2-fixing organelles)

Semi-permeable 
icosahedral protein shell

Carbonic 
Anhydrase
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Bicarbonate 
transporters

Accumulation

https://doi.org/10.1016/j.tim.2021.10.004


Part II: 
Carboxysomes: A Group of 
Bacterial Microcompartments 
(BMCs)
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Assembly Pathways of Carboxysomes

Image credit: Liu, Trends Microbiol. 2022, 30, 567
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(“inside-out” model)

(liquid-like)

CcmN interacts with CcmM by its N terminus 
and shell proteins through its C-terminal 

peptide, inducing encapsulation of shell proteins 
surrounding the RuBisCO matrix

CsoS2 forms multivalent interactions with 
RuBisCO on its N terminus and binds shell 

proteins on its C terminus

https://doi.org/10.1016/j.tim.2021.10.004


Selective Permeability of Carboxysomes Shell 
Proteins

Image credit: Liu, Trends Microbiol. 2022, 30, 567
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To mediate permeability

Positive electrostatic 
surface potentials for 

HCO3
– 

https://doi.org/10.1016/j.tim.2021.10.004


Positioning of Carboxysomes: McdAB Systems
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Image credit: MacCready et al., Mol. Microbiol. 2021, 116, 277 (CC BY 4.0)

Halothiobacillus neapolitanus RuBisCO-mTurquoise2

Cell pole region: Carboxysome biogenesis and degradation take place

https://doi.org/10.1111/mmi.14708


Carboxysomes: Pass from Mother to Daughter Cell
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Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)

Stop growing immediately

After 26.5 hours, the cells 
had only one carboxysome

• Decrease in carboxysomes per cell from generation to generation

• The growth rate gradually decreased from generation to 
generation

• Cells without carboxysome stopped growing immediately

https://doi.org/10.1126/sciadv.aba1269


Carboxysomes: Different Activities

16Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)

Carboxysome 
lasted <13 hours 
(excluded)

Net 
productivity = 0

Reached a net 
productivity of 18 μm 
in less than 50 hours

• Cell length was measured

• “Net productivity” was 

calculated, indicating the 

activity of a single 

carboxysome over time

• All biomass accumulation and 

cell growth can be attributed 

to a single carboxysome

• Tracked 452 single-

carboxysome trees

• Clustered into 4 categories

Single-handedly supporting 
7 generations of growth

An example of an ultra-productive carboxysome

Constant 
growth rate

https://doi.org/10.1126/sciadv.aba1269


Carboxysomes: Importance in CO2 Concentration 
and Cell Growth

Image credit: (Left) Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)

Image credit: (right) Niederhuber et al., MBoC. 2017, 28, 2734. (CC BY 3.0 NC-SA)
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Knockout of 
carboxysome-
related genes

IPTG-inducible 
carboxysome-
related genes

GFP tagged to 
RuBisCO

Iconic hexagon shape was gone after knockout

Responsible for condensation of RuBisCOSpot plate

https://doi.org/10.1126/sciadv.aba1269
https://doi.org/10.1091/mbc.e17-01-0069


Part III: 
Applications of Cyanobacteria 
in Biotechnology
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Potential Applications
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Example 1: Engineering Cyanobacteria for 
Carbohydrates Biosynthesis
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• In comparison to heterotrophic hosts 

(i.e., E. coli, and yeast), native 

cyanobacteria are usually less tolerant 

to chemicals

• Synthesising soluble sugars are less or 

not toxic

• One example is glycogen which 

accumulated in cyanobacterial strains 

for carbon storage naturally, and is an 

important and promising feedstock 

material for producing biofuel

• Strain used: Synechococcus sp. strain 

PCC 7002

Credit: Aikawa et al., Biotechnol. Biofuels Bioprod. 2014, 7, 1 (CC BY 2.0)

https://doi.org/10.1186/1754-6834-7-88


Example 2: Increasing Limonene Yield in 
Cyanobacteria for Bioeconomy
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• Pathway enzyme engineering 

marginally increases 

cyanobacterial terpene 

(/ˈtɜːrpiːn/) production

• Sigma factor overexpression 

improves photosynthetic 

efficiency in cyanobacteria

• Enhanced photosynthesis results 

in high limonene production in 

cyanobacteria

Limonene (/'lɪmənˌiːn/) Higher oxygen evolution

Under 5% CO2 environment 19 mg/L in 
7 days

Credit: Shinde et al., Metab. Eng. Commun. 2022, 14, e00193 (CC BY 4.0 NC-ND)

https://doi.org/10.1016/j.mec.2022.e00193


Conclusion

22

1 2 3

Roles of Autotrophs in Carbon 
Cycle

Carboxysomes: A Group of 
Bacterial Microcompartments

Applications of Cyanobacteria 
in Biotechnology

• Autotrophs play an 

important role in carbon 

cycle

• Cyanobacteria are 

responsible for 20~30% 

global carbon fixation

• Achievable because of their 

CCMs

• Carboxysomes trap HCO3
– 

for RuBisCO with the 

selective pore

• The role of McdAB system in 

positioning carboxysomes

• It passes from mother to 

daughter cell with varying 

activity dynamics

• Cyanobacteria are abundant 

sources of bio-active 

compounds

• Recent studies focus on 

identifying the strains and 

growth conditions suitable 

for large-scale cultivation

• It has huge potential for bio-

economy



Thank you! 
Do you have any questions? 
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Carboxysomes: Pass from Mother to Daughter Cell
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Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)

Constitutively expressed 
RbcL-GFP allows for 

RuBisCO visualisation

The native ccm operon 
(ccmK2K1LMN) was 

knocked out, producing 
the HCR strain ∆ccm

An IPTG-inducible version of the ccm 
operon was reintroduced to create 
the ∆ccm+ strain, resulting in IPTG-

dependent carboxysome expression 
and growth rescue in ambient CO2

Remove IPTG to stop 
the biogenesis of 

carboxysome

https://doi.org/10.1126/sciadv.aba1269


Carboxysomes: Different Activities

28
Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)

Diagram of a ∆ccm+ family tree

• The single-carboxysome tree starts at the cell indicated with an asterisk

• Net productivity is calculated for each frame of the single-carboxysome tree

• Green, blue, and magenta colours indicate 2+, 1, or 0 carboxysomes, respectively, present at that time in the tree

https://doi.org/10.1126/sciadv.aba1269


Loss of Carboxysome Activity: Shell Breakage

29
Image credit: Hill et al., Sci. Adv. 2020, 6, eaba1269 (CC BY 4.0 NC)

Change in localisation 
of the GFP punctum 
from the cytoplasm to 
a pole of the cell

• Rapid diffusion of CO2 into the cytoplasm

• Carboxysome lumen is no longer distinct from the cytoplasm

• In other words, the CCMs are abolished

https://doi.org/10.1126/sciadv.aba1269
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