Unraveling the Virulence Mechanism of *Fusarium oxysporum* Tropical Race 4 in Banana Wilt

Karen TSANG Man Wai (Year 1 PhD Student)

Supervisor: Prof. Xiao YANG

11 December 2024

Department of Microbiology, CUHK

Introduction and Background

Outline

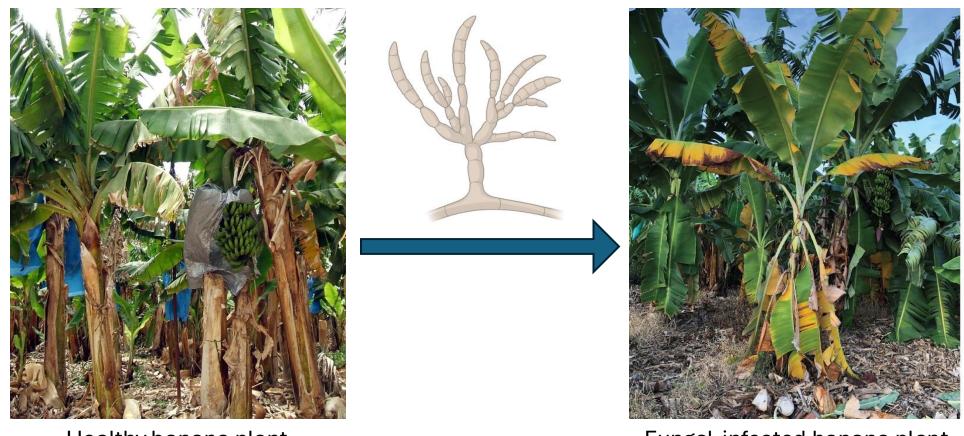
Infection and Colonisation

Virulence Factors

Conclusion

<u>Banana</u>

 Main dietary sources of carbohydrates in Africa, Southeast Asia, and tropical America


 Most important fruit in terms of production volume and trade

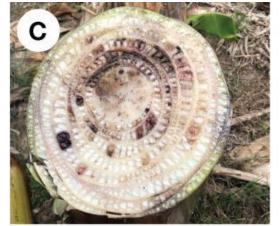
 Most traded variety currently: Cavendish banana

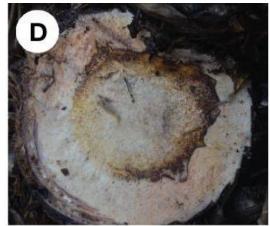
-> ~99% of banana export

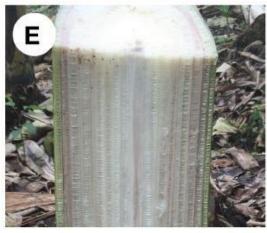
-> ~50M tonnes production volume

Fusarium wilt of banana (Panama disease)

Healthy banana plant


Fungal-infected banana plant


External symptom: Yellowing and wilting of leaves


Banana wilt (Panama disease)

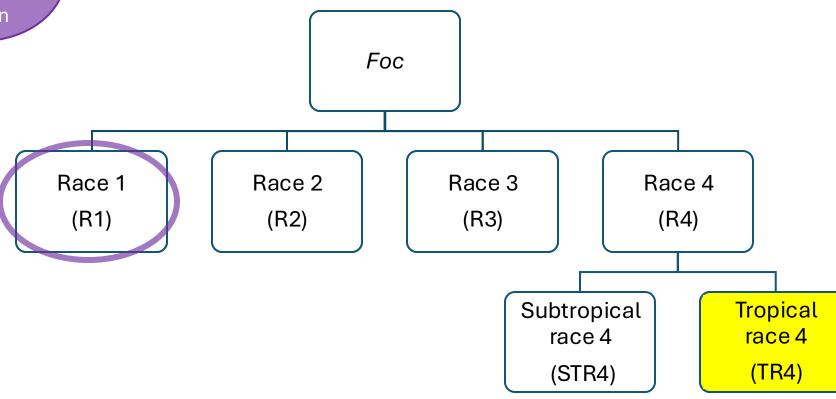
Fungal-infected banana plant



Healthy banana plant

Internal symptoms: Vascular necrosis & discolouration

Fusarium oxysporum f. sp. cubense (Foc)


wiped out almost all banana plantations

Total trade losses: USD 2.3 billion

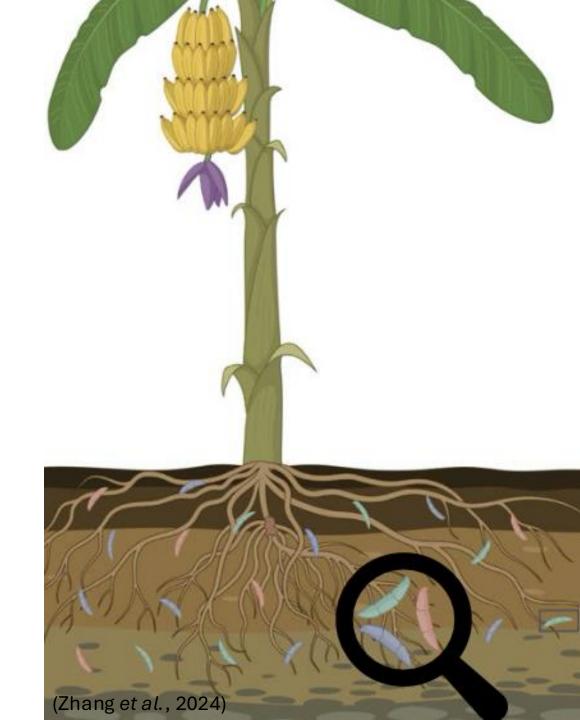
Caused epidemic of banana wilt in midtwentieth

Resolved by substitution of race 1 resistant cultivars – Cavendish banana

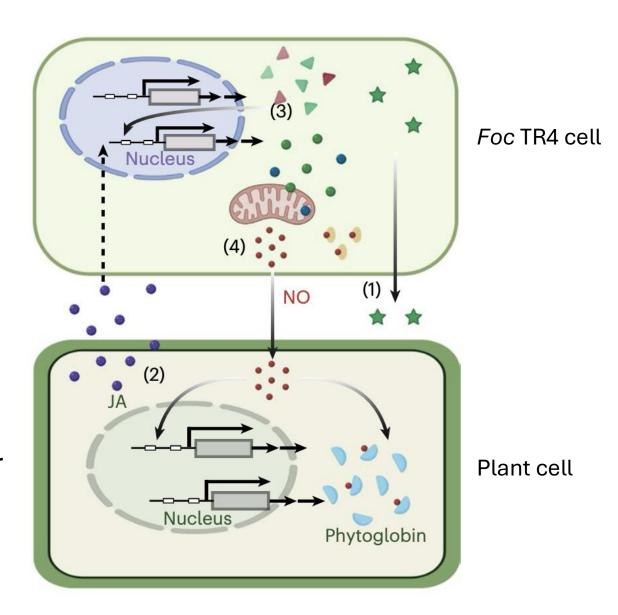
Foc Tropical race 4 (TR4)

- Initial report: 1989
- Currently affecting 23 countries, including largest banana exporters
- Estimated that 80% of global production is under the threat of TR4
- No cure

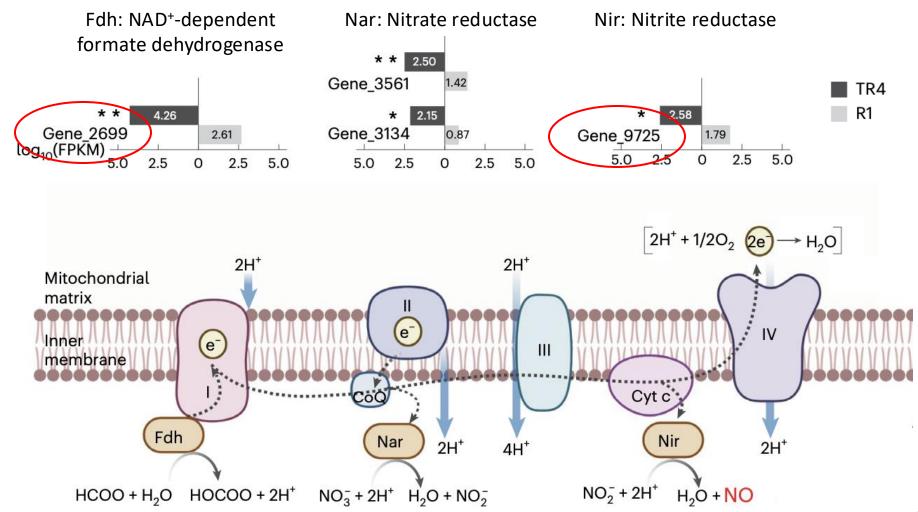
(Department of Agriculture, Fisheries and Forestry, 2024; Food and Agriculture Organizations of United Nations , 2024b)

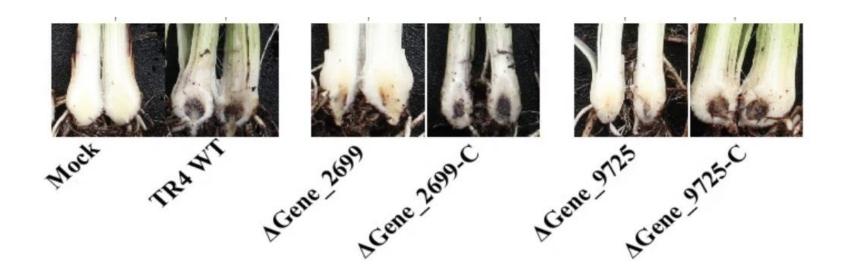

Infection & Colonisation **Invasion Colonisation &** Reproduction **Penetration &** Germination **Dormancy & Survival**

(Dita et al., 2018)

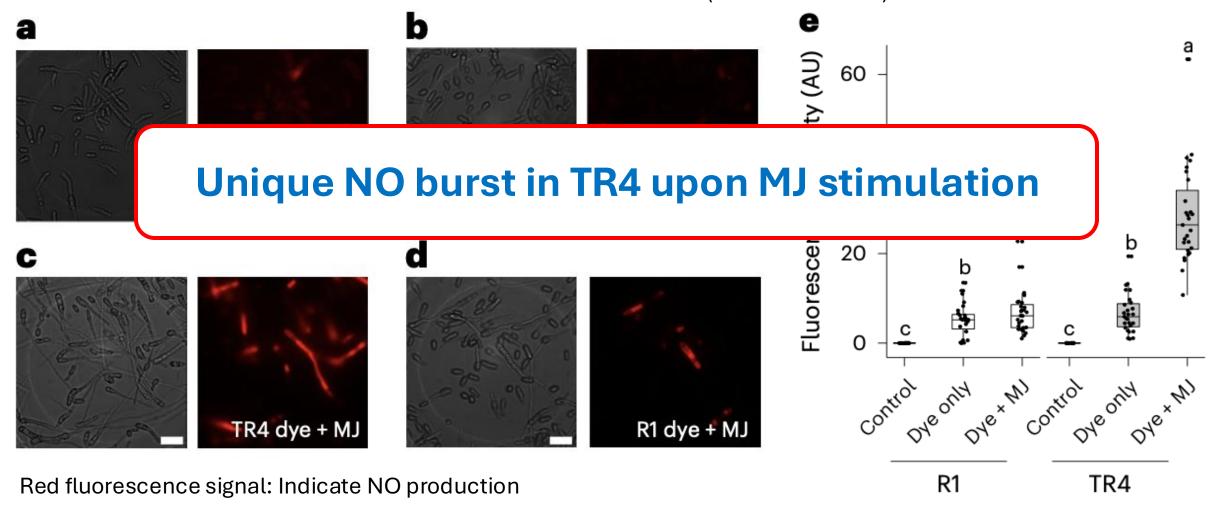

Pathogenicity highlights Other virulence factors Virulence factor: Nitric Oxide Adaptation & Survival

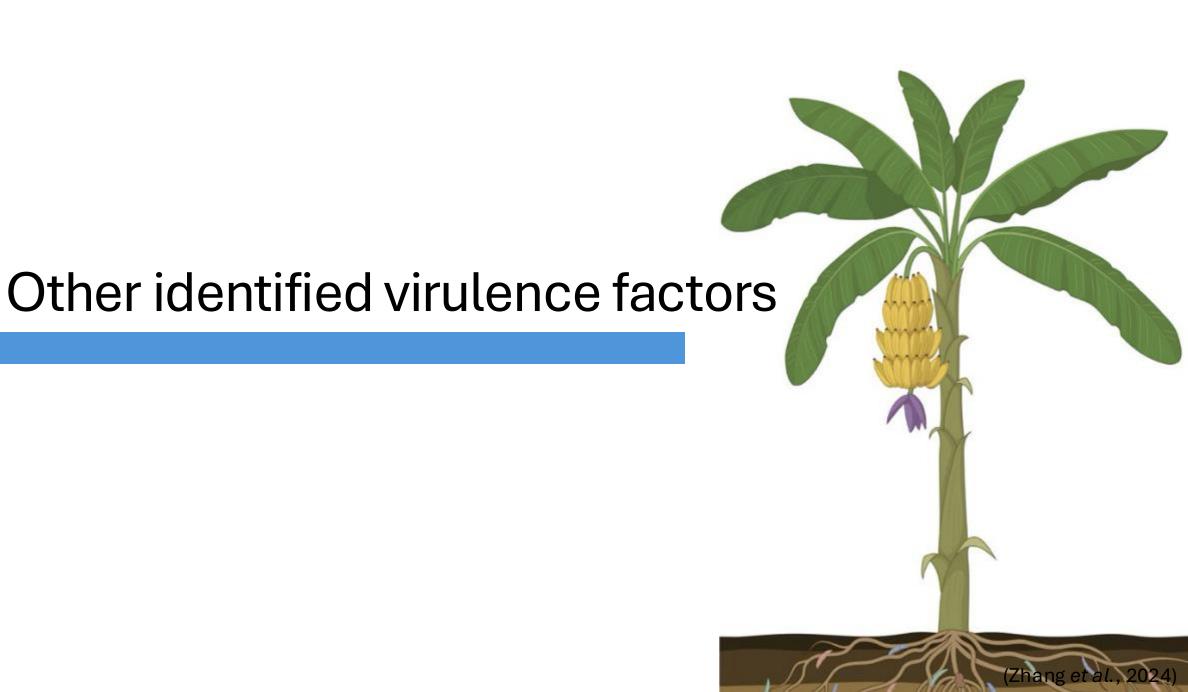
(Dita et al., 2018)


Nitric Oxide (NO) burst – Nitrosative stress


- Fungal-host interaction
- Impose nitrosative stress within the root
- Process:
- (1) Plant-fungal recognition
- (2) Induction of JA signalling pathway
- (3) Transcription reprogramming, upregulating a transcription factor required for host-mediated fungal NO production
- (4) Fungus-derived NO burst in plant

Upregulation of genes in the NO biosynthesis pathway in TR4




Gene knockout and complementation of Gene_2699 & Gene_9725

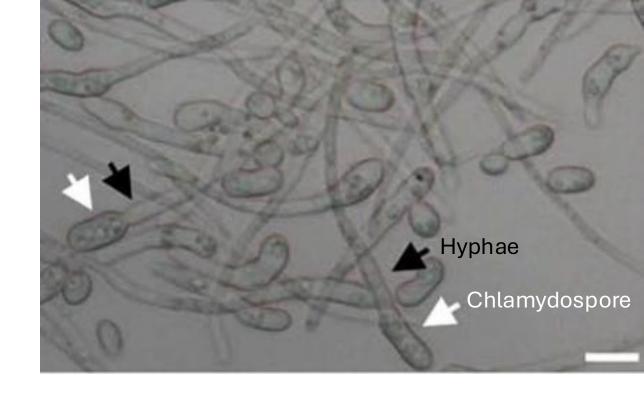
NO production facilitates TR4 invasion to the banana root

Alternative source of NO burst in TR4 - Methyl jasmonate (MJ) stimulation
(Active form of JA)



Other identified virulence factors

Virulence confirmed by gene knockouts, while the underlying pathogenetic mechanisms awaits elucidation-


Gene Name	Annotation	Biological Functions	References
SIX1a	Secreted in xylem protein 1a	Virulence	Widinugraheni et al. 201
SIX8	Secreted in xylem protein 8	Virulence	An et al. 2019
CP1	Cerato-Platanin Family Protein	Virulence	Liu et al. 2019
FSE1	Fusarium special effector 1	Virulence elicitor	Yang et al. 2023
SP9	Secreted protein 9	Virulence	Guo et al. 2022
CUPIN1	cupin_1 domain containing protein	Virulence	Yan et al. 2022
SSP1	Small Secreted Protein 1	Conidiation, Virulence elicitor	Wang et al. 2022b
SSP17	Small Secreted Protein 17	Virulence	Wang et al. 2023b
M35_1	Metalloprotease Effector	Virulence	Zhang et al. 2021
OASTL	O-acetylhomoserine(thiol)-lyase	Virulence	Wang et al. 2020
ECM33	GPI-linked cell wall protein	Growth, Virulence	Huang et al. 2022
PGC4	Exo-polygalacturonase 4	Growth, Virulence	Dong et al. 2020
GCN5	General Control Non-derepressible 5	Growth, Conidiation, Virulence	Liu et al. 2022
PMI1	phosphomannose isomerase	Growth, Virulence	Usman et al. 2023
OCH1	α-1,6-mannosyl transferase	Growth, Conidiation, Virulence	Li et al. 2014
GCS	Glucosylceramide synthase	Growth, Conidiation, Virulence	Wang et al. 2022a
SLT2	MAP kinase	Growth, Virulence, BEA synthesis	Ding et al. 2015
MKK2	MAP kinase	Growth, Virulence, BEA synthesis	Ding et al. 2015
BCK1	MAP kinase	Growth, Virulence, BEA synthesis	Ding et al. 2015
FGA2	Ga subunit	Growth, Virulence	Guo et al. 2016
FGB1	Gβ subunit	Growth, Conidiation, Virulence	Guo et al. 2016
SGE1	SIX gene expression 1	Growth, Conidiation, Virulence	Gurdaswani et al. 2020
RLM1	MADS-box TF	Virulence, FSA/BEA synthesis	Ding et al. 2020
ATF1	bZIP transcription factor	Virulence	Qi et al. 2013
PP1	Pheromone precursor 1	Growth, Virulence	Liu et al. 2023
QDE2	AGO protein	Growth, Conidiation, Virulence	Li et al. 2022
DCL1	Dicer protein	Conidiation	Li et al. 2022

Adaptation and Survival Mechanisms

Adaptation and Survival

- Production of chlamydospore
 - Resilient in unfavourable environmental conditions
 - Persistence in soil (may survive in the soil >20 years)

- Facilitate dissemination: plant-to-plant movement / soil dispersal
- Infect new host efficiently when bananas are planted/replanted

Foc TR4 can survive, disperse, and infect the hosts effectively

Control Strategies

New resistant banana

Cultural practices

Integrated management

Conclusion

 Foc is again posing imminent risk to food security and global banana trade

Nitrosative stress contributes to the virulence of Foc TR4

 Research, agricultural and industrial sectors should work together to avoid another banana crisis

References

- Chen, D., Ju, M., Xie, J., Chen, X., & Peng, J. (2024). Current progress on pathogenicity-related genes in Fusarium oxysporum f. sp. cubense tropical race 4. Phytopathology Research, 6(1). https://doi.org/10.1186/s42483-024-00274-5
- Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G., & Staver, C. P. (2018). Fusarium Wilt of Banana: Current Knowledge on Epidemiology and Research Needs Toward Sustainable Disease Management. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01468
- Food and Agriculture Organizations of United Nations. (2024a). Banana market review 2023. Rome. Available online at: https://openknowledge.fao.org/server/api/core/bitstreams/1085e3ed-0f37-4e7d-848d-cdfe203be158/content
- Food and Agriculture Organization of the United Nations. (2024b). TR4 Basics | TR4 Global Network. Available online at: https://www.fao.org/tr4gn/tr4-basics/en/
- Liu, S., Li, J., Zhang, Y., Liu, N., Viljoen, A., Mostert, D., Zuo, C., Hu, C., Bi, F., Gao, H., Sheng, O., Deng, G., Yang, Q., Dong, T., Dou, T., Yi, G., Ma, L., & Li, C. (2019). Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. *New Phytologist*, 225(2), 913–929. https://doi.org/10.1111/nph.16193
- Munhoz, T., Vargas, J., Teixeira, L., Staver, C., & Dita, M. (2024). Fusarium tropical race 4 in Latin America and the Caribbean: Status and global research advances towards disease management. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1397617
- Department of Agriculture, Fisheries and Forestry, Australian government. (2024). Panama Disease Tropical Race 4. Available online at: https://www.agriculture.gov.au/biosecurity-trade/pests-diseases-weeds/plant/identify/panama-disease-tropical-race-4
- The Editors of Encyclopaedia Britannica. (2024). Banana | Description, history, cultivation, nutrition, Benefits, & facts. Encyclopedia Britannica. https://www.britannica.com/plant/banana-plant
- Toykiller. (n.d.). Download wallpapers by subject films. GoodFon Wallpaper on Pc and Phone. https://www.goodfon.com/films/wallpaper-minony-gadkiy-ya-despicable.html
- Yuri. (n.d.). Fusarium oxysporum. http://thunderhouse4-yuri.blogspot.com/2012/06/fusarium-oxysporum.html
- Zhang, Y., Liu, S., Mostert, D., Yu, H., Zhuo, M., Li, G., Zuo, C., Haridas, S., Webster, K., Li, M., Grigoriev, I. V., Yi, G., Viljoen, A., Li, C., & Ma, L. (2024). Virulence of banana wilt-causing fungal pathogen Fusarium oxysporum tropical race 4 is mediated by nitric oxide biosynthesis and accessory genes. *Nature Microbiology*, 9(9), 2232–2243. https://doi.org/10.1038/s41564-024-01779-7

